Google Answers Logo
View Question
 
Q: RC series calculation ( Answered 5 out of 5 stars,   0 Comments )
Question  
Subject: RC series calculation
Category: Science > Physics
Asked by: noggywoggy-ga
List Price: $4.00
Posted: 02 Feb 2003 09:15 PST
Expires: 04 Mar 2003 09:15 PST
Question ID: 156343
Derive an expression for the ratio of the output voltage over the 
input voltage, Vout/Vin, in the circuit shown in Figure 1, in terms of 
the resistances, R1 and R2, the capacitances, C1 and C2, and the 
frequency, omega, of the input signal.   Use complex representation of the 
impedances in the circuit and, thus, express the ratio, Vout/Vin, as a 
complex number. 

Fig. 1:

     +---R1---+ 
+----+        +----+------+ 
|    +---C1---+    |      | 
|                  |      | 
|                +-+-+    | 
Vin              |   |    | 
|                R2  C2   Vout 
|                |   |    | 
|                +-+-+    | 
|                  |      | 
|                  |      | 
+------------------+------+ 
| 
| 
Ground 
 
Thanks!
Answer  
Subject: Re: RC series calculation
Answered By: shivreddy-ga on 02 Feb 2003 13:14 PST
Rated:5 out of 5 stars
 
Hi,

Thank you very much for your question. I appreciate the innovative
pains you took at reproducing that circuit. I have tried to give you a
detailed analysis below.

Consider the R1C1 arm:

The equivalent impedance value can be calculated this way.

( R1/jwC1 )/( R1 + (1/jwC1) )          --- (1)

where R1 is the resistance. 1/jwC1 is the impedance of the capacitence
arm. Note 1: w = Omega ( the frequency)
Note 2: j = imaginary part operator in a complex number

(1) can be reduced to 

R1 / ( jwC1R1 + 1 )                     --- (2)

The same analysis done above holds for the R2C2 arm:

The equivalent impedance value can be calculated this way.

( R2/jwC2 )/( R2 + (1/jwC2) )          --- (3)

(3) can be reduced to 

R2 / ( jwC2R2 + 1 )                     --- (4)

Now in an impedance division network, the Vout = k2/(k1+k2) times the
Vin.  Where k1 and k2 are the two arms discussed above.

Hence,

(Vout / Vin) = k2/(k1+k2)

= (R2 / (jwR2C2 + 1) ) / [(R2 / (jwR2C2 + 1) ) + (R1 / (jwR1C1 + 1) )]


= R2 / { R2 +  R1 [(jwR2C2 + 1)/(jwR1C1 + 1)]  }


= R2(jwR1C1 + 1) / { R2(jwR1C1 + 1) +  R1(jwR2C2 + 1) }


= (R2 + jwR1R2C1) / { (R1 + R2) + jwR1R2 (C1 + C2) }       -- (5)


This can be conjugated and expressed in the form of a complex number.
If numerical vaules are given it would be easier to simplify further.

I hope this helps!

Thank you once again for your question.

Warmest Regards,
Shiv Reddy
noggywoggy-ga rated this answer:5 out of 5 stars
Thanks! Spot on.

Comments  
There are no comments at this time.

Important Disclaimer: Answers and comments provided on Google Answers are general information, and are not intended to substitute for informed professional medical, psychiatric, psychological, tax, legal, investment, accounting, or other professional advice. Google does not endorse, and expressly disclaims liability for any product, manufacturer, distributor, service or service provider mentioned or any opinion expressed in answers or comments. Please read carefully the Google Answers Terms of Service.

If you feel that you have found inappropriate content, please let us know by emailing us at answers-support@google.com with the question ID listed above. Thank you.
Search Google Answers for
Google Answers  


Google Home - Answers FAQ - Terms of Service - Privacy Policy