Following is a dataset:
Qty Price Advertising Income
42100 11.77 46100 38000
55500 9.96 47200 39100
71100 12.36 60900 40100
63200 12.49 55600 44200
77200 10.68 64400 41800
70900 12.07 60700 44800
55600 11.97 52100 39900
70700 11.23 57900 43600
71400 11.26 55600 41700
79400 9.79 60100 41200
60600 12.29 50700 44000
50800 12.70 46500 43300
61800 12.33 58600 41000
40500 10.88 42800 38300
85300 10.14 64800 42100
Say you have 3 simple regression equations:
Qty = 117763-4713*Price
t-statPrice = -1.35, SEE = 12800, R2=12.3%, Adj R2 = 5.5%, F-stat = 1.82
Qty = -32655+1.75*Advertising
t-statPrice = 9.43, SEE = 4883, R2=87.2%, Adj R2 = 86.3%, F-stat = 88.84
Qty = -58386+2.94*Income
t-statPrice = 1.99, SEE = 11962, R2=23.4%, Adj R2 = 17.5%, F-stat = 3.97
A) Which of the independent variables are significant and at what confidence level?
B) What is the difference between each simple regression coefficient
estimate and that which might be estimated using a multiple regression
approach involving all three independent variables? |