Google Answers Logo
View Question
Q: universe expansion ( Answered,   1 Comment )
Subject: universe expansion
Category: Science > Astronomy
Asked by: bill22-ga
List Price: $100.00
Posted: 07 Mar 2006 19:56 PST
Expires: 06 Apr 2006 20:56 PDT
Question ID: 704771
Is it possible (and has any data been found to support)that an
expansion of the universe is due to matter passing thru the universes
"event horizon" (please see universe as black hole question). I
suppose this question should read the statement : Given that the
universe is a black hole are there observations to support expansion
from the absorbtion of matter thru its event horizon? If there is
please point me to the data and researchers who postulate this.
Subject: Re: universe expansion
Answered By: hedgie-ga on 14 Mar 2006 01:19 PST
The well known (well popularized)

"There are basically three possible shapes to the Universe;
a flat Universe (Euclidean or zero curvature),
a spherical Universe (positive curvature) or 
a hyperbolic Universe (negative curvature) .."

is true when we limit ourselves to the 'BASIC shapes'.
  It is like if we would say :

 Earth surface may be 
 1) a plain  
 2) valley 
 3) mountain

and from that, from local statistics of our surrounding,
 we with try to estimate the  average curvature of the planetary
surface ( ~ 2E-7 1/m) .

The 'we' in this case would be some alien ant, who was deposited on the surface 
of the planet as a prank of an ID or of evolution. The we=ant may do better to
use his idle moments  to attempt to organize the data relevant for her survival.
Ant should 'process the data of applied science' =  ?Il faut cultiver
notre jardin,?

However, every culture has it'd oen Creation Myth.
May be it is needed as a sort of 'boundary condition' and so we ask:

What happened 'before history' and 'beyond the universe' - which really
means 'what can we know about that, which we "cannot know"?  

So, after this cautionary intro, let's turn to

Search Term: complex topology universe 


 Hawking, S. and Ellis, G., The Large-Scale Structure of Space and Time (Cam-
bridge Monographs on Mathematical Physics), Cambridge University Press,
Cambridge, 1983

The possibility of universe with complex topology is well known and accepted.
What would need to be done to make this a mainstream model- 
the hard part - is to connect such models to observations,
in a way which satisfies the Occam Razor requirement.

This paper reviews one such attempt, using microwave background.

Measuring the Topology of the Universe

Observations of microwave background fluctuations can yield
information not only about the geometry of the universe, but
potentially about the topology of the universe

More specifically:

"are there observations to support expansion
from the absorption of matter thru its event horizon?"

  Answer is : there are theories which postulate such 'creation of matter'
 out of nowhere. They are called " steady-state theory" and it gained
many adherents in the 1950s and 1960s.

" How could the universe continue to look the same when observations
show it to be expanding, which would tend to thin out its contents?
Supporters of this cosmology balanced the ever-decreasing density that
results from the expansion by hypothesizing that matter was
continuously created out of nothing. The amount required was
undetectably small?about a few atoms for every cubic mile each year"

Here is overview of the theory

Does it agree with data?

"For most cosmologists, the refutation of the steady-state theory came
with the discovery of the cosmic background radiation in 1965, which
was predicted by the big bang theory. Steven Hawking said that the
fact that microwave radiation had been found, and that it was thought
to be left over from the big bang, was "the final nail in the coffin
of the steady-state theory."

 However, if you combine SS (Steady State) with (Universe as a Black
Hole) hypothesis, these objection fade away.
 There is a specific time when our Black-Hole universe was formed, and
the matter is conserved (in combined set of universes)
  So, question really: Does such theory explain current data better
that 'standard' Big Bang model.
 I would say that question is open, particularly considering the fact
that the 'minority view' of current cosmology,
 questioning the existence of the dark matter and energy is gaining momentum.

I wanted to add to an answer you got to question you asked In a previous posting:
question you asked:
"Is our universe a black hole and if it is where is the singularity?"

The singularity would not be in our universe, but in the 'one above us' -- where
above needs to be qualified: If we do consider universe with complex
topology paradigm
of Einstein and Riemann geometry, we really are talking about one
universe, with multiply
connected COMPONENTS. We would be in a situation similar to the times
of Edwin Hubble, who
proposed a 'wild hypothesis' that certain Nebulae (gas clouds) are
actually 'island universes'.

At that time. a new name (Galaxy) was coined and universe remain 'one'
(uni). So following
that history, we would need a new (less generic) name for a
'component' with simple topology
(with basic shape) and we would say that matter is conserved in a
universe, but matter and energy
can be exchanged between the topological components. One can imagine
whole hierarchy (a tree) of
components which have singularities, and which (on the inside side)
have more singularities (their
own black holes) forming a 'tree'. In this sense, we would have a
notion 'of up and down' in this
hierarchy, and can say that singularity is in the component which is 'above us'
Of course, that assumes that the graph of these components is indeed a
tree - that it is a poset:


Request for Answer Clarification by bill22-ga on 19 Mar 2006 06:36 PST
Am I to assume that your answer shows different theorists
interpetation of data, that may be described by the universe as a
black hole, in which the combination of steady state with the universe
as a black hole model, has the aforementioned observations that are
consistent with that "model" but cannot be called observations just
consistent indirect phenomena?

Clarification of Answer by hedgie-ga on 02 Jun 2006 11:12 PDT

        first I want to apologize about the delay in answering your
RFC. The system has problems lately in notifying people aabout
requests and repsonses, and I only noticed your reguest today.

 First a comment on the comment: 

I agree with iang-ga on 14 Mar 2006 14:28 PST :

" Does such theory explain current data better
that 'standard' Big Bang model? In a word, no."

 The standard model explains the few facts we have,  
 and that's main reason it is the standard model.

But I think that your question :

Is it possible?

is not the same as Ing's question (Is it the best?).
I think it is right and proper,
and even necessary to consider alternative theories.
They may turn out to 'explain best' the data not yet known.

That said, I admit I do not understand your:

" the aforementioned observations that are
consistent with that "model" but cannot be called observations just
consistent indirect phenomena?"

Can you perhaps break it into several sentences? Perhaps add some commas:

"..but cannot be called observations, just
consistent indirect phenomena?"

 What do you mean by : consistent indirect phenomena???

 To summarize simply: we have a few observations. Very few.

  Things like 

 microwave background
 apparent expansion of universe (based on the redshift of galaxies)
 classification of stars, galaxies,

 The intro on the beginning of my answer was attempting to convey how
little we know
(like an ant dropped in one place of a vast planet).

 There are many reasonable models consistent with the few facts we do have.
 Big Bang  is a SIMPLE model which fits known data well.

  Other models are possible.  In the absence of compelling facts  (some new data)
  most scientist will choose the simplest (see 'Occam razor') as 'right' and Ian's
 comment reflects that. 

   The hypothetical model (of the hierarchy of universes, embedded in
each other as black
   holes) that I mentioned also explains current data. But it is much
more complex, and we
   do not have enough data which would justify such a complication.

   Similar example is theory according to Big Bang was preceeded by
Big Crunch and universe
   is pulsating like that (from small to large) for ever. It is a
variant on Steady State
   (and I do find philosophically more pretty then just one single BB
in which 'spacetime
was created') but it more complex then BB. It is possible, nevertheless.
Subject: Re: universe expansion
From: iang-ga on 14 Mar 2006 14:28 PST
>So, question really: Does such theory explain current data better
that 'standard' Big Bang model.

In a word, no.  The cited website isn't exactly a peer reviewed paper!

Ian G.

Important Disclaimer: Answers and comments provided on Google Answers are general information, and are not intended to substitute for informed professional medical, psychiatric, psychological, tax, legal, investment, accounting, or other professional advice. Google does not endorse, and expressly disclaims liability for any product, manufacturer, distributor, service or service provider mentioned or any opinion expressed in answers or comments. Please read carefully the Google Answers Terms of Service.

If you feel that you have found inappropriate content, please let us know by emailing us at with the question ID listed above. Thank you.
Search Google Answers for
Google Answers  

Google Home - Answers FAQ - Terms of Service - Privacy Policy